Cycle period of a network oscillator is independent of membrane potential and spiking activity in individual central pattern generator neurons.

نویسندگان

  • Paul S Katz
  • Akira Sakurai
  • Stefan Clemens
  • Deron Davis
چکیده

Rhythmic motor patterns are thought to arise through the cellular properties and synaptic interactions of neurons in central pattern generator (CPG) circuits. Yet, when examining the CPG underlying the rhythmic escape response of the opisthobranch mollusc, Tritonia diomedea, we found that the cycle period of the fictive swim motor pattern recorded from the isolated nervous system was not altered by changing the resting membrane potential or the level of spiking activity of any of the 3 known CPG cell types: ventral swim interneuron-B (VSI-B), the dorsal swim interneurons (DSIs), and cerebral neuron 2 (C2). Furthermore, tonic firing in one or more DSIs or C2 evoked rhythmic bursting that did not differ from the cycle period of the motor pattern evoked by nerve stimulation, regardless of the firing frequency. In contrast, the CPG produced a large range of cycle periods as a function of temperature. The temperature sensitivity of the fictive motor pattern produced by the isolated nervous system was similar to the temperature sensitivity of the swimming behavior produced by the intact animal. Thus, although the CPG is capable of producing a wide range of cycle periods under the influence of temperature, the membrane potentials and spiking activity of the identified CPG neurons do not determine the periodicity of the motor pattern. This suggests that the timing of activity in this network oscillator may be determined by a mechanism that is independent of the membrane potentials and spike rate of its constituent neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cycle Period of a Network Oscillator is Independent of Membrane Potential and Spiking Activity in Individual Central Pattern Generator Neurons

Rhythmic motor patterns are thought to arise through the cellular properties and synaptic interactions of neurons in central pattern generator (CPG) circuits. Yet, when examining the CPG underlying the rhythmic escape response of the opisthobranch mollusc, Tritonia diomedea, we found that the cycle period of the fictive swim motor pattern recorded from the isolated nervous system was not altere...

متن کامل

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

How Does Maintenance of Network Activity Depend on Endogenous Dynamics of Isolated Neurons?

Robust activity of some networks, such as central pattern generators, suggests the existence of physiological mechanisms that maintain the most important characteristics, for example, the period and spike frequency of the pattern. Whatever these mechanisms are, they change the appropriate model parameters to or along the isomanifolds on which the characteristics of the pattern are constant, whi...

متن کامل

Detailed model of intersegmental coordination in the timing network of the leech heartbeat central pattern generator.

To address the general problem of intersegmental coordination of oscillatory neuronal networks, we have studied the leech heartbeat central pattern generator. The core of this pattern generator is a timing network that consists of two segmental oscillators, each of which comprises two identified, reciprocally inhibitory oscillator interneurons. Intersegmental coordination between the segmental ...

متن کامل

Duty Cycle Maintenance in an Artificial Neuron

Neuroprosthetics is at the intersection of neuroscience, biomedical engineering, and physics. A biocompatible neuroprosthesis contains artificial neurons exhibiting biophysically plausible dynamics. Hybrid systems analysis could be used to prototype such artificial neurons. Biohybrid systems are composed of artificial and living neurons coupled via real-time computing and dynamic clamp. Model n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 2004